le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
↳ QTRS
↳ Overlay + Local Confluence
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → LE(s(X), Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
LE(s(X), s(Y)) → LE(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → LE(s(X), Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
LE(s(X), s(Y)) → LE(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
IFMINUS(false, s(X), Y) → MINUS(X, Y)
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
MINUS(s(X), Y) → LE(s(X), Y)
LE(s(X), s(Y)) → LE(X, Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LE(s(X), s(Y)) → LE(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(X), s(Y)) → LE(X, Y)
trivial
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFMINUS(false, s(X), Y) → MINUS(X, Y)
Used ordering: Combined order from the following AFS and order.
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
trivial
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
s1 > 0
minus(0, Y) → 0
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
ifMinus(true, s(x0), x1)
ifMinus(false, s(x0), x1)
quot(0, s(x0))
quot(s(x0), s(x1))